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Exercise 1

Let T ě 0 be a positive real number and b P C1
`

r0, T s ˆ Rd
˘

be bounded with divx b
bounded. Assume that u0 P L

1
loc

`

Rd
˘

and f P L1
`

r0, T s ;L1
loc

`

Rd
˘˘

.

Prove that there exists a unique function u P L8
`

r0, T s ;L1
loc

`

Rd
˘˘

such that for any
ϕ P C8c

`

r0, T s ˆ Rd
˘

the map t ÞÑ xu pt, ¨q , ϕy is continuous in t and which is solution to

"

Btu` b ¨∇xu “ f, in D1
`

r0, T s ˆ Rd
˘

,
u|t“0 “ u0, in D1

`

Rd
˘

.
(1)

Proof. First of all, given that b P C1
`

r0, T s ˆ Rd
˘

, then there existX ps, t, xq P C1
`

r0, T s ˆ Rd
˘

solution to
"

BsX ps, t, xq “ b ps,X ps, t, xqq , @ ps, t, xq P r0, T s ˆ r0, T s ˆ Rd,
X pt, t, xq “ x, @ pt, xq P r0, T s ˆ Rd (2)

Using Duhamel’s formula, we define the function v as

v pt, xq :“ u0 pX p0, t, xqq `

ż t

0
ds f ps,X ps, t, xqq . (3)

From the hypotheses on f and b we have that v is well defined almost everywhere in x
and t; moreover v P L8

`

r0, T s ;L1
loc

`

Rd
˘˘

. Indeed let K be a compact in Rd; we get

sup
tPr0,T s

ż

K
dx v pt, xq ď sup

tPr0,T s

„
ż

K
dx |u0 pX p0, t, xqq| `

ż

K
dx

ż t

0
ds |f ps,X ps, t, xqq|



(4)

“ sup
tPr0,T s

«

ż

Xpt,0,Kq
dx |u0 pxq| J pt, 0, xq (5)

`

ż t

0
ds

ż

Xpt,s,Kq
dx |f ps, xq| J pt, s, xq

ff

. (6)

On the one hand we have that for any point x P K, using the fact that b is bounded, we
get

|X ps, t, xq| “

ˇ

ˇ

ˇ

ˇ

x´

ż t

s
dr b pr,X pr, t, xqq

ˇ

ˇ

ˇ

ˇ

ď |x| ` }b}8 T. (7)
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As a consequence the set X pt, s,Kq Ď K `B}b}8T p0q is bounded and therefore compact
(it is closed by the continuity of X). On the other hand we have that J is uniformly
bounded, indeed

J ps, t, xq “ e´
şt
s dr pdivx bqpr,Xpr,t,xqq ď e}divx b}8T . (8)

We therefore get

sup
tPr0,T s

ż

K
dx v pt, xq ď e}divx b}8T

ż

K`B}b}8T p0q
dx

„

|u0 pxq| `

ż t

0
ds |f ps, xq|



, (9)

and v P L8
`

r0, T s , L1
loc

`

Rd
˘˘

.

We now prove that v is the unique solution to (1); to do so, we first show that t ÞÑ
xv pt, ¨q , ϕy is continuous; first notice that

ż

Rd

dx ϕ pxqh pX ps, t, xqq “

ż

Rd

dx ϕ pX pt, s, xqqh pxq J pt, s, xq . (10)

Now, both X and J are continuous functions, and using the dominated convergence
theorem we get that t ÞÑ xv pt, ¨q , ϕy is continuous for every ϕ P C8c

`

r0, T s ˆ Rd
˘

. Fix
now ϕ P C8c

`

r0, T s ˆ Rd
˘

; we get

xBtv ` b ¨∇xv, ϕy “ (11)

“ ´

ż T

0
dt

ż

Rd

dx v pt, x, q pBtϕ pt, xq ` divx pb pt, xqϕ pt, xqqq (12)

“ ´

ż T

0
dt

ż

Rd

dx u0 pX p0, t, xqq pBtϕ pt, xq ` divx pb pt, xqϕ pt, xqqq (13)

´

ż T

0
dt

ż

Rd

dx

ż t

0
ds f ps,X ps, t, xqq pBtϕ pt, xq ` divx pb pt, xqϕ pt, xqqq . (14)

For the first term notice that
ż

Rd

dx u0 pX p0, t, xqq Btϕ pt, xq “

ż

Rd

dx u0 pxq pBtϕq pt,X pt, 0, xqq J pt, 0, xq (15)

“

ż

Rd

dx u0 pxq rBt pϕ pt,X pt, 0, xqq J pt, 0, xqq (16)

´ b pt,X pt, 0, xqq ¨ p∇xϕq pt,X pt, 0, xqq J pt, 0, xq (17)

´ϕ pt,X pt, 0, xqq pdivx bq pt,X pt, 0, xqq J pt, 0, xqs (18)

“ Bt

ż

Rd

dx u0 pxqϕ pt,X pt, 0, xqq J pt, 0, xq (19)

´

ż

Rd

dx u0 pX p0, t, xqqdivx pb pt, xqϕ pt, xqq . (20)

When we do the integration in time, now, the first integral disappears and therefore the
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term in (13) vanishes. Proceeding analogously we also get

ż

Rd

dx f ps,X ps, t, xqq Btϕ pt, xq “ (21)

“

ż

Rd

dx f ps, xq Bt pϕ pt,X pt, s, xqq J pt, s, xqq (22)

´

ż

Rd

dx f ps,X ps, t, xqqdivx pb pt, xqϕ pt, xqq . (23)

If we do both the integral in s and t for the first term, we get

ż T

0
dt

ż t

0
ds

ż

Rd

dx f ps, xq Bt pϕ pt,X pt, s, xqq J pt, s, xqq “ (24)

“

ż

Rd

dx

ż T

0
ds f ps, xq

ż T

s
dt Bt pϕ pt,X pt, s, xqq J pt, s, xqq (25)

“ ´

ż

Rd

dx

ż T

0
ds f ps, xqϕ ps,X ps, s, xqq J ps, s, xq (26)

“ ´

ż

Rd

dx

ż T

0
ds f ps, xqϕ ps, xq “ ´xf, ϕy, (27)

and therefore v is a solution to (1) in D1
`

r0, T s ˆ Rd
˘

.

Consider now u1 and u2 two different solutions to (1) in D1
`

r0, T s ˆ Rd
˘

. Then, u1 ´ u2

would solve the problem

"

Btu` b ¨∇xu “ 0, in D1
`

r0, T s ˆ Rd
˘

,
u|t“0 “ 0, in D1

`

Rd
˘

.
(28)

We now show then that the unique solution to this problem is the solution which is
constantly 0. Let u be such a solution and define now

w pt, xq :“ u pt,X pt, s, xqq J pt, s, xq . (29)

Consider then ϕ P C8c
`

r0, T s ˆ Rd
˘

; we get that, given that u is a solution

xBtw,ϕy “ ´

ż T

0
ds

ż

Rd

dx w pt, xq Btϕ pt, xq (30)

“ ´

ż T

0
ds

ż

Rd

dx u pt,X pt, s, xqq J pt, s, xq Btϕ pt, xq (31)

“ ´

ż T

0
ds

ż

Rd

dx u pt, xq pBtϕq pt,X p0, t, xqq . (32)

Given that we have

pBtϕq pt,X p0, t, xqq “ (33)

“ Bt pϕ pt,X p0, t, xqqq ` pb pt, xq ¨∇xXq p0, t, xq ¨ p∇xϕq pt,X p0, t, xqq (34)

“ Bt pϕ pt,X p0, t, xqqq ` b pt, xq ¨∇x pϕ pt,X p0, t, xqqq . (35)
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Using a smoothing argument similar to the one we saw in class and the equation for u we
get that

ż T

0
ds

ż

Rd

dx u pt, xq Bt pϕ pt,X p0, t, xqqq “ ´xBtu, ϕ p¨, X p0, ¨, ¨qqy (36)

“ xb ¨∇xu, ϕ p¨, X p0, ¨, ¨qqy (37)

“ ´

ż T

0
ds

ż

Rd

dx u pt, xq b pt, xq ¨∇x pBt pϕ pt,X p0, t, xqqqq . (38)

As a consequence, we get that Btw “ 0 in D1
`

r0, T s ˆ Rd
˘

. As a consequence w is constant
in time, and therefore we get

u ps, xq “ u ps,X ps, s, xqq J ps, s, xq “ w ps, xq (39)

“ w p0, xq “ u p0, X p0, s, xqq J p0, s, xq “ 0, (40)

which concludes our proof.

Exercise 2

Let T ě 0 be a positive real number and b P C1
`

r0, T s ˆ Rd
˘

be bounded with divx b
bounded. Assume that u0 P C

1
`

Rd
˘

XL8
`

Rd
˘

. Thanks to the first exercise, we now that
there exists u P L8

`

r0, T s ;L1
loc

`

Rd
˘˘

such that for any ϕ P C8c
`

r0, T s ˆ Rd
˘

the map
t ÞÑ xu pt, ¨q , ϕy is continuous in t and which is a solution to

"

Btu` b ¨∇xu “ 0, in D1
`

r0, T s ˆ Rd
˘

,
u|t“0 “ u0, in D1

`

Rd
˘

.
(41)

Prove that the following statements are equivalent:

• u P L8
`

r0, T s ˆ Rd
˘

is a renormalized solution to (41);

• u P C1
`

r0, T s ˆ Rd
˘

is a classical solution to (41).

Proof. If u is a renormalized solution in particular it is a weak solution to (41), and we
know from the previous point that the solution is unique. On the other hand the solution
given by

u pt, xq :“ u0 pX p0, t, xqq (42)

is a classical solution to (41), and a fortiori also a weak one. Therefore the unique solution
must be classic.

Conversely, let u P C1
`

r0, T s ˆ Rd
˘

be a classic solution; consider β P C1 pR;Rq. We get

Bt pβ pu pt, xqqq “ β1 pu pt, xqq Btu pt, xq “ ´β
1 pu pt, xqq b pt, xq ¨∇xu pt, xq (43)

“ ´b pt, xq ¨∇x pβ pu pt, xqqq , (44)

therefore also β puq is a classical solution and a fortiori also a weak one and u is a renor-
malized solution.
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Exercise 3

Let Ω1 and Ω2 be two measurable spaces with σ-finite measures µ1 and µ2 respectively.
Let f : Ω1 ˆ Ω2 Ñ R be a µ1 ˆ µ2 measurable function and assume that f ě 0. Let
p P r1,`8q. Then

ˆ
ż

Ω1

ˆ
ż

Ω2

f px, yq dµ2 pyq

˙p

dµ1 pxq

˙
1
p

ď

ˆ
ż

Ω1

ż

Ω2

f px, yqp dµ2 pyq dµ1 pxq

˙
1
p

(45)

Proof. Given that µ1 and µ2 are σ-finite, using Fubini’s Theorem we get that the function

x ÞÑ

ż

Ω2

f px, yqp dµ2 pyq (46)

is measurable for any p P r1,`8q, so both sides of the inequality make sense.

We can assume that the left hand side is non-zero; indeed, if it is the inequality is trivial,
given that the right hand side is of course positive. We assume moreover for the moment
that the quantity on the left is finite. Define now F as the following measurable function:

F pxq :“

ż

Ω2

f px, yq dµ2 pyq . (47)

Then the left hand side can be rewritten as

ˆ
ż

Ω1

ˆ
ż

Ω2

f px, yq dµ2 pyq

˙p

dµ1 pxq

˙
1
p

“

ˆ
ż

Ω1

F pxqp dµ1 pxq

˙
1
p

(48)

We then get

ż

Ω1

F pxqp dµ1 pxq “

ż

Ω1

ˆ
ż

Ω2

f px, yq dµ2 pyq

˙

F pxqp´1 dµ1 pxq (49)

“

ż

Ω2

ˆ
ż

Ω1

f px, yqF pxqp´1 dµ1 pxq

˙

dµ2 pyq . (50)

Given that p1 “ p
p´1 and using Hölder inequality, we get

ż

Ω1

f px, yqF pxqp´1 dµ1 pxq ď

ˆ
ż

Ω1

f px, yqp dµ1 pxq

˙
1
p
ˆ
ż

Ω1

F pxqp dµ1 pxq

˙

p´1
p

(51)

We now plug in this in the estimate for the left hand side to get

ż

Ω1

F pxqp dµ1 pxq ď

ˆ
ż

Ω1

F pxqp dµ1 pxq

˙

p´1
p

ż

Ω2

ˆ
ż

Ω1

f px, yqp dµ1 pxq

˙
1
p

dµ2 pyq , (52)

and carrying the first integral to the left side we get the result.

If now the left hand side is infinite, we consider the sequence of functions fM :“ fχM ,
where χM is the characteristics of the set tpx, yq P Ω1 ˆ Ω2| f px, yq ďMu. Moreover, we
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fix two sequences of sets tωn
1 unPN, tωn

2 unPN such that µj

´

ωn
j

¯

ă `8 and
Ť

nPN ω
n
j “ Ωj

for j “ 1, 2; given that the left hand side of the inequality to prove is finite for fM on
ωn

1 ˆ ω
n
2 , we get

˜

ż

ωn
1

˜

ż

ωn
2

fM px, yq dµ2 pyq

¸p

dµ1 pxq

¸
1
p

ď

˜

ż

ωn
1

ż

ωn
2

fM px, yq
p dµ2 pyq dµ1 pxq

¸
1
p

(53)

ď

ˆ
ż

Ω1

ż

Ω2

f px, yqp dµ2 pyq dµ1 pxq

˙
1
p

. (54)

On the other hand, we get

sup
nPN,Mě0

˜

ż

ωn
1

˜

ż

ωn
2

fM px, yq dµ2 pyq

¸p

dµ1 pxq

¸
1
p

“ `8, (55)

and therefore the inequality is still true.
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