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Exercise 1

Let T > 0 be a positive real number and b € C* ([O,T] X Rd) be bounded with div, b
bounded. Assume that ug € L{ . (R?) and f e L' ([0,T]; LL . (R?)).
Prove that there exists a unique function v € L% ([O,T] Ll (Rd)) such that for any

loc

¢ € CP ([0,T] x R?) the map t — (u(t,-),¢) is continuous in ¢ and which is solution to

atU‘Fb‘vzu:f? in D’ ([O’T] XRd)’ (1)
u’t:(] = Uo, in D' (Rd) :

Proof. First of all, given that b € C1 ([0, 7] x R?), then there exist X (s,t,z) € C1 ([0,T] x R?)
solution to

0sX (s,t,2) =b(s,X (s,t,2)), V(s t,x)e[0,T]x[0,T]x RY, ,
{ X (tt,zx) ==, Y (t,x) € [0,T] x R (2)

Using Duhamel’s formula, we define the function v as

t

v (t,x) ==y (X(O,t,a:))—i—Lds f(s, X (s,t,x)). (3)

From the hypotheses on f and b we have that v is well defined almost everywhere in x
and ¢; moreover v € L® ([O, T]; L} (Rd)). Indeed let K be a compact in R?; we get

loc

r t
sup J dr v(t,z) < sup f dx |ug (X (0,t,))] —i—f dx J ds |f(s,X(s,t,$))]
te[0,T] VK te[0,7] LYK K 0
(4)
— sup || de fuo @] T (1.0.9) (5)
tef0,7] | Jx(£0.K)
¢
+f ds f do ]f(s,:):)]J(t,s,x)]. (6)
0 X(t,s,K)

On the one hand we have that for any point z € K, using the fact that b is bounded, we
get

[ X (s, t,2)| =

t
x—jWmewmwﬁ<u+qu )



As a consequence the set X (¢, s, K) € K + By _7 (0) is bounded and therefore compact
(it is closed by the continuity of X). On the other hand we have that J is uniformly
bounded, indeed

J (s,,2) = e Sedr (dive b)(rX (rt2)) < ldiva bl T (8)

We therefore get

t
sup f dz v (t, 7) < eldive bl T j dz {|UO(1‘)|+ f ds If(s,:v)l}, ()
te[0,T] JK K+BHb||ooT(0) 0

and ve L* ([0,T], L, (R?)).

loc

We now prove that v is the unique solution to (1); to do so, we first show that ¢ —
(v (t,-),p) is continuous; first notice that

J dz o (@) h (X (5.,2)) —J dv o (X (t,5,2)) h (2)J (t5,7). (10)
Rd R

Now, both X and J are continuous functions, and using the dominated convergence
theorem we get that ¢ — (v (¢,-),¢) is continuous for every ¢ € C* ([0,T] x R?). Fix
now ¢ € CL ([0,T] x RY); we get

(0w +b- Vv, ) = (11)
T
- —J dt J dz v (t,x,) (O (t,2) + divg (b (L, x) @ (£, 1)) (12)
0 R4
T
= —J dt J dx ug (X (0,t,2)) (G (t,x) + divy (b (t,x) ¢ (t,2))) (13)
0 R4

T t
- J dt f dx J ds f(s,X (s,t,2)) (Opp (t,x) +divy (b(t, ) ¢ (t,2))). (14)
0 R4 0

For the first term notice that

fRd dz o (X (0,4, 7)) dup (£, 7) — f dz o (x) () (b X (1,0,2)) J (£,0,5)  (15)

»
_ fRd dz o () [0 (0 (1, X (£,0,2)) J (¢,0,2)) (16)
B X (£,0,2)) - (Vai) (8, X (£,0,2)) J (1,0, ) (17)
Co (X (£,0,2)) (diva b) (, X (£,0,2)) J (£, 0, 2)] (18)
_ 4, fRd de o (2) o (6 X (£,0,2)) J (¢, 0, 2) (19)
_ JW da o (X (0,4, 2)) diva (b () ¢ (£ 2)) . (20)

When we do the integration in time, now, the first integral disappears and therefore the



term in (13) vanishes. Proceeding analogously we also get
| do 76X st ot =
R4
~ [ F 2 X (52 T (t5,)
R4
—f do [ (5, X (5,6,2)) dive (b (4, 2) o (1, 2)) -
R4
If we do both the integral in s and t for the first term, we get
T ¢
| e s [ o g X G tsa) -
0 0 R4
T T
=J dx J ds f(s,ac)f dt o: (¢ (t, X (t,s,2)) J (t,s,2))
R4 0 s

_ —JRddx LTds Fls,2) (s, X (s,5,2)J(s,5,2)
- _dedx LTds f(s,x)p(s,x) = =(f, ¢,

and therefore v is a solution to (1) in D’ ([0, 7] x R?).

(21)
(22)

(23)

Consider now u; and uy two different solutions to (1) in D’ ([0, 7] x R?). Then, u; — us

would solve the problem

du—+b-Vyu=0, inD ([0,7] x RY),
uly,_g =0, in D' (RY).

(28)

We now show then that the unique solution to this problem is the solution which is

constantly 0. Let u be such a solution and define now

w(t,x) :=u(t,X (t,s,x))J (¢ s,x).
Consider then p € CF ( [0,T] x R?); we get that, given that u is a solution

);
(Oyw, cp)——des J dzx w (t,z) o (t, )

0 d

S
=

=

L sf do u(t, X (t,s,2)) J (t, 5,2) dp (t, )

d

=

desJ da u (t, ) (6rp) (t, X (0,1, 7))

0 R4

Given that we have
(atSD) (t7 X (07 t? J))) =

= at (30 (taX (Ovta l‘))) + (b (t,:l?) ’ VxX) (O,t,:L') ’ (vz‘p) (th (O,t,l‘))
=0 (90 (ta X (Ovta x))) +0b (ta x) Vg (80 (t7X (07t7x)>) :

(29)

—~
w
=~

S~—



Using a smoothing argument similar to the one we saw in class and the equation for v we
get that

T
| as | uoaeex 0na) - ~@ue X000 69)
b Vau o (X (0. ) (37
f dsf dz u(t,2)b(t2) - Va (0 (0 (1 X (0.4,2))). (38)
Rd

As a consequence, we get that d;w = 0in D’ ([O, T] % Rd). As a consequence w is constant
in time, and therefore we get

u(s,z) =u(s, X (s,8,2))J(s,s,2) =w(s,x) (39)
=w(0,z) =u(0,X (0,s,2))J(0,s,2) =0, (40)

which concludes our proof.

Exercise 2

Let T > 0 be a positive real number and b € C* ([O,T] X Rd) be bounded with div, b
bounded. Assume that ug € C* (Rd N L* (Rd). Thanks to the first exercise, we now that
there exists u € L ([0,T]; Ll (R?)) such that for any ¢ € C® ([0,T] x R?) the map
t— {(u(t,-),p)is continuous in ¢ and which is a solution to

{ du—+b-Vyu=0, inD ([0,T] x RY),

ul,_y = o, in D’ (RY) . (41)

Prove that the following statements are equivalent:

e ue L* ([0,7] x R?) is a renormalized solution to (41);

e ue ! ([0,77 x Rd) is a classical solution to (41).

Proof. If u is a renormalized solution in particular it is a weak solution to (41), and we
know from the previous point that the solution is unique. On the other hand the solution
given by

u(t,z) :==up (X (0,t,z)) (42)

is a classical solution to (41), and a fortiori also a weak one. Therefore the unique solution
must be classic.

Conversely, let u e C1 ([0, T] x R?) be a classic solution; consider 8 € C! (R;R). We get
ot (B(u(t,x))) =B (u(t,z)) du(t,z) = —F (u(t,z))b(t,z) - Vyu(t,x) (43)
=—b (t7 l‘) Vg (/6 (u (tv .CL‘))) ) (44)

therefore also f (u) is a classical solution and a fortiori also a weak one and u is a renor-
malized solution.

O



Exercise 3

Let €1 and €y be two measurable spaces with o-finite measures pp and s respectively.
Let f: Q1 x Q2 — R be a yu1 x us measurable function and assume that f > 0. Let
p € [1,+0). Then

(Jnl ( Q fz,y) dus (y)>pdﬂ1 (iﬂ)); < <£21 o £ (@) dpz (y) din (:z:)) T (45)

Proof. Given that u; and uo are o-finite, using Fubini’s Theorem we get that the function

v f(z,y)P duz (y) (46)

is measurable for any p € [1, +0), so both sides of the inequality make sense.

We can assume that the left hand side is non-zero; indeed, if it is the inequality is trivial,
given that the right hand side is of course positive. We assume moreover for the moment
that the quantity on the left is finite. Define now F' as the following measurable function:

F(z):= 0 f(z,y)dus (y) - (47)

Then the left hand side can be rewritten as

(Ll < o [ (@,y) dps (y)>pdu1 (ﬂc)); = ( o F (z)P dps (@)p (48)

We then get
[ Ferame-| ( f(sc,y>du2<y>)F(x)p—ldm(x) (49)
Q1 951 Qo
-[ ( F (o) F @) dm <x>) dpis (y) (50)
Qo (951

Given that p’ = 1% and using Holder inequality, we get

p—1
p

P Fr dun @) < ([ £ i @)); (fﬂ Fran (@) 61

Ql Q1

We now plug in this in the estimate for the left hand side to get

F @) (o) < ( [, #aram @) - I, ( ) @) ' s 0)s (52)

and carrying the first integral to the left side we get the result.

If now the left hand side is infinite, we consider the sequence of functions fisr := fxar,
where xj7 is the characteristics of the set {(x,y) € Q1 x Qa| f (z,y) < M}. Moreover, we



fix two sequences of sets {w]'}, . {wh},cn Such that (w?) < +o0 and {J,enwj = Q;

for j = 1,2; given that the left hand side of the inequality to prove is finite for fj; on
wi X wy, we get

(L( S (. y) dp (y)) dpy (w)) < O" S (s y)? dp (y) dpn (:v)>p (53)

< (Ll o f (@, y)? dpa (y) d (;,;))’1’_ (54)

S

On the other hand, we get

and therefore the inequality is still true.



