

Kinetic Equations

Solution to the Exercises

– 11.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d)$ be bounded with $\operatorname{div}_x b$ bounded. Assume that $u_0 \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $f \in L^1([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$.

Prove that there exists a unique function $u \in L^\infty([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$ such that for any $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$ the map $t \mapsto \langle u(t, \cdot), \varphi \rangle$ is continuous in t and which is solution to

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = f, & \text{in } \mathcal{D}'([0, T] \times \mathbb{R}^d), \\ u|_{t=0} = u_0, & \text{in } \mathcal{D}'(\mathbb{R}^d). \end{cases} \quad (1)$$

Proof. First of all, given that $b \in C^1([0, T] \times \mathbb{R}^d)$, then there exist $X(s, t, x) \in C^1([0, T] \times \mathbb{R}^d)$ solution to

$$\begin{cases} \partial_s X(s, t, x) = b(s, X(s, t, x)), & \forall (s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d, \\ X(t, t, x) = x, & \forall (t, x) \in [0, T] \times \mathbb{R}^d \end{cases} \quad (2)$$

Using Duhamel's formula, we define the function v as

$$v(t, x) := u_0(X(0, t, x)) + \int_0^t ds f(s, X(s, t, x)). \quad (3)$$

From the hypotheses on f and b we have that v is well defined almost everywhere in x and t ; moreover $v \in L^\infty([0, T]; L^1_{\text{loc}}(\mathbb{R}^d))$. Indeed let K be a compact in \mathbb{R}^d ; we get

$$\sup_{t \in [0, T]} \int_K dx v(t, x) \leq \sup_{t \in [0, T]} \left[\int_K dx |u_0(X(0, t, x))| + \int_K dx \int_0^t ds |f(s, X(s, t, x))| \right] \quad (4)$$

$$= \sup_{t \in [0, T]} \left[\int_{X(t, 0, K)} dx |u_0(x)| J(t, 0, x) \right] \quad (5)$$

$$+ \int_0^t ds \int_{X(t, s, K)} dx |f(s, x)| J(t, s, x) \right]. \quad (6)$$

On the one hand we have that for any point $x \in K$, using the fact that b is bounded, we get

$$|X(s, t, x)| = \left| x - \int_s^t dr b(r, X(r, t, x)) \right| \leq |x| + \|b\|_\infty T. \quad (7)$$

As a consequence the set $X(t, s, K) \subseteq K + B_{\|b\|_\infty T}(0)$ is bounded and therefore compact (it is closed by the continuity of X). On the other hand we have that J is uniformly bounded, indeed

$$J(s, t, x) = e^{-\int_s^t dr (\operatorname{div}_x b)(r, X(r, t, x))} \leq e^{\|\operatorname{div}_x b\|_\infty T}. \quad (8)$$

We therefore get

$$\sup_{t \in [0, T]} \int_K dx v(t, x) \leq e^{\|\operatorname{div}_x b\|_\infty T} \int_{K + B_{\|b\|_\infty T}(0)} dx \left[|u_0(x)| + \int_0^t ds |f(s, x)| \right], \quad (9)$$

and $v \in L^\infty([0, T], L^1_{\operatorname{loc}}(\mathbb{R}^d))$.

We now prove that v is the unique solution to (1); to do so, we first show that $t \mapsto \langle v(t, \cdot), \varphi \rangle$ is continuous; first notice that

$$\int_{\mathbb{R}^d} dx \varphi(x) h(X(s, t, x)) = \int_{\mathbb{R}^d} dx \varphi(X(t, s, x)) h(x) J(t, s, x). \quad (10)$$

Now, both X and J are continuous functions, and using the dominated convergence theorem we get that $t \mapsto \langle v(t, \cdot), \varphi \rangle$ is continuous for every $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$. Fix now $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$; we get

$$\langle \partial_t v + b \cdot \nabla_x v, \varphi \rangle = \quad (11)$$

$$= - \int_0^T dt \int_{\mathbb{R}^d} dx v(t, x) (\partial_t \varphi(t, x) + \operatorname{div}_x(b(t, x) \varphi(t, x))) \quad (12)$$

$$= - \int_0^T dt \int_{\mathbb{R}^d} dx u_0(X(0, t, x)) (\partial_t \varphi(t, x) + \operatorname{div}_x(b(t, x) \varphi(t, x))) \quad (13)$$

$$- \int_0^T dt \int_{\mathbb{R}^d} dx \int_0^t ds f(s, X(s, t, x)) (\partial_t \varphi(t, x) + \operatorname{div}_x(b(t, x) \varphi(t, x))). \quad (14)$$

For the first term notice that

$$\int_{\mathbb{R}^d} dx u_0(X(0, t, x)) \partial_t \varphi(t, x) = \int_{\mathbb{R}^d} dx u_0(x) (\partial_t \varphi)(t, X(t, 0, x)) J(t, 0, x) \quad (15)$$

$$= \int_{\mathbb{R}^d} dx u_0(x) [\partial_t(\varphi(t, X(t, 0, x)) J(t, 0, x)) \quad (16)$$

$$- b(t, X(t, 0, x)) \cdot (\nabla_x \varphi)(t, X(t, 0, x)) J(t, 0, x) \quad (17)$$

$$- \varphi(t, X(t, 0, x)) (\operatorname{div}_x b)(t, X(t, 0, x)) J(t, 0, x)] \quad (18)$$

$$= \partial_t \int_{\mathbb{R}^d} dx u_0(x) \varphi(t, X(t, 0, x)) J(t, 0, x) \quad (19)$$

$$- \int_{\mathbb{R}^d} dx u_0(X(0, t, x)) \operatorname{div}_x(b(t, x) \varphi(t, x)). \quad (20)$$

When we do the integration in time, now, the first integral disappears and therefore the

term in (13) vanishes. Proceeding analogously we also get

$$\int_{\mathbb{R}^d} dx f(s, X(s, t, x)) \partial_t \varphi(t, x) = \quad (21)$$

$$= \int_{\mathbb{R}^d} dx f(s, x) \partial_t (\varphi(t, X(t, s, x)) J(t, s, x)) \quad (22)$$

$$- \int_{\mathbb{R}^d} dx f(s, X(s, t, x)) \operatorname{div}_x (b(t, x) \varphi(t, x)). \quad (23)$$

If we do both the integral in s and t for the first term, we get

$$\int_0^T dt \int_0^t ds \int_{\mathbb{R}^d} dx f(s, x) \partial_t (\varphi(t, X(t, s, x)) J(t, s, x)) = \quad (24)$$

$$= \int_{\mathbb{R}^d} dx \int_0^T ds f(s, x) \int_s^T dt \partial_t (\varphi(t, X(t, s, x)) J(t, s, x)) \quad (25)$$

$$= - \int_{\mathbb{R}^d} dx \int_0^T ds f(s, x) \varphi(s, X(s, s, x)) J(s, s, x) \quad (26)$$

$$= - \int_{\mathbb{R}^d} dx \int_0^T ds f(s, x) \varphi(s, x) = -\langle f, \varphi \rangle, \quad (27)$$

and therefore v is a solution to (1) in $\mathcal{D}'([0, T] \times \mathbb{R}^d)$.

Consider now u_1 and u_2 two different solutions to (1) in $\mathcal{D}'([0, T] \times \mathbb{R}^d)$. Then, $u_1 - u_2$ would solve the problem

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = 0, & \text{in } \mathcal{D}'([0, T] \times \mathbb{R}^d), \\ u|_{t=0} = 0, & \text{in } \mathcal{D}'(\mathbb{R}^d). \end{cases} \quad (28)$$

We now show then that the unique solution to this problem is the solution which is constantly 0. Let u be such a solution and define now

$$w(t, x) := u(t, X(t, s, x)) J(t, s, x). \quad (29)$$

Consider then $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$; we get that, given that u is a solution

$$\langle \partial_t w, \varphi \rangle = - \int_0^T ds \int_{\mathbb{R}^d} dx w(t, x) \partial_t \varphi(t, x) \quad (30)$$

$$= - \int_0^T ds \int_{\mathbb{R}^d} dx u(t, X(t, s, x)) J(t, s, x) \partial_t \varphi(t, x) \quad (31)$$

$$= - \int_0^T ds \int_{\mathbb{R}^d} dx u(t, x) (\partial_t \varphi)(t, X(0, t, x)). \quad (32)$$

Given that we have

$$(\partial_t \varphi)(t, X(0, t, x)) = \quad (33)$$

$$= \partial_t (\varphi(t, X(0, t, x))) + (b(t, x) \cdot \nabla_x X)(0, t, x) \cdot (\nabla_x \varphi)(t, X(0, t, x)) \quad (34)$$

$$= \partial_t (\varphi(t, X(0, t, x))) + b(t, x) \cdot \nabla_x (\varphi(t, X(0, t, x))). \quad (35)$$

Using a smoothing argument similar to the one we saw in class and the equation for u we get that

$$\int_0^T ds \int_{\mathbb{R}^d} dx u(t, x) \partial_t (\varphi(t, X(0, t, x))) = -\langle \partial_t u, \varphi(\cdot, X(0, \cdot, \cdot)) \rangle \quad (36)$$

$$= \langle b \cdot \nabla_x u, \varphi(\cdot, X(0, \cdot, \cdot)) \rangle \quad (37)$$

$$= - \int_0^T ds \int_{\mathbb{R}^d} dx u(t, x) b(t, x) \cdot \nabla_x (\partial_t (\varphi(t, X(0, t, x)))) . \quad (38)$$

As a consequence, we get that $\partial_t w = 0$ in $\mathcal{D}'([0, T] \times \mathbb{R}^d)$. As a consequence w is constant in time, and therefore we get

$$u(s, x) = u(s, X(s, s, x)) J(s, s, x) = w(s, x) \quad (39)$$

$$= w(0, x) = u(0, X(0, s, x)) J(0, s, x) = 0, \quad (40)$$

which concludes our proof. \square

Exercise 2

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d)$ be bounded with $\operatorname{div}_x b$ bounded. Assume that $u_0 \in C^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$. Thanks to the first exercise, we now that there exists $u \in L^\infty([0, T]; L^1_{\operatorname{loc}}(\mathbb{R}^d))$ such that for any $\varphi \in C_c^\infty([0, T] \times \mathbb{R}^d)$ the map $t \mapsto \langle u(t, \cdot), \varphi \rangle$ is continuous in t and which is a solution to

$$\begin{cases} \partial_t u + b \cdot \nabla_x u = 0, & \text{in } \mathcal{D}'([0, T] \times \mathbb{R}^d), \\ u|_{t=0} = u_0, & \text{in } \mathcal{D}'(\mathbb{R}^d). \end{cases} \quad (41)$$

Prove that the following statements are equivalent:

- $u \in L^\infty([0, T] \times \mathbb{R}^d)$ is a renormalized solution to (41);
- $u \in C^1([0, T] \times \mathbb{R}^d)$ is a classical solution to (41).

Proof. If u is a renormalized solution in particular it is a weak solution to (41), and we know from the previous point that the solution is unique. On the other hand the solution given by

$$u(t, x) := u_0(X(0, t, x)) \quad (42)$$

is a classical solution to (41), and a fortiori also a weak one. Therefore the unique solution must be classic.

Conversely, let $u \in C^1([0, T] \times \mathbb{R}^d)$ be a classic solution; consider $\beta \in C^1(\mathbb{R}; \mathbb{R})$. We get

$$\partial_t(\beta(u(t, x))) = \beta'(u(t, x)) \partial_t u(t, x) = -\beta'(u(t, x)) b(t, x) \cdot \nabla_x u(t, x) \quad (43)$$

$$= -b(t, x) \cdot \nabla_x(\beta(u(t, x))), \quad (44)$$

therefore also $\beta(u)$ is a classical solution and a fortiori also a weak one and u is a renormalized solution. \square

Exercise 3

Let Ω_1 and Ω_2 be two measurable spaces with σ -finite measures μ_1 and μ_2 respectively. Let $f : \Omega_1 \times \Omega_2 \rightarrow \mathbb{R}$ be a $\mu_1 \times \mu_2$ measurable function and assume that $f \geq 0$. Let $p \in [1, +\infty)$. Then

$$\left(\int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) d\mu_2(y) \right)^p d\mu_1(x) \right)^{\frac{1}{p}} \leq \left(\int_{\Omega_1} \int_{\Omega_2} f(x, y)^p d\mu_2(y) d\mu_1(x) \right)^{\frac{1}{p}} \quad (45)$$

Proof. Given that μ_1 and μ_2 are σ -finite, using Fubini's Theorem we get that the function

$$x \mapsto \int_{\Omega_2} f(x, y)^p d\mu_2(y) \quad (46)$$

is measurable for any $p \in [1, +\infty)$, so both sides of the inequality make sense.

We can assume that the left hand side is non-zero; indeed, if it is the inequality is trivial, given that the right hand side is of course positive. We assume moreover for the moment that the quantity on the left is finite. Define now F as the following measurable function:

$$F(x) := \int_{\Omega_2} f(x, y) d\mu_2(y). \quad (47)$$

Then the left hand side can be rewritten as

$$\left(\int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) d\mu_2(y) \right)^p d\mu_1(x) \right)^{\frac{1}{p}} = \left(\int_{\Omega_1} F(x)^p d\mu_1(x) \right)^{\frac{1}{p}} \quad (48)$$

We then get

$$\int_{\Omega_1} F(x)^p d\mu_1(x) = \int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) d\mu_2(y) \right) F(x)^{p-1} d\mu_1(x) \quad (49)$$

$$= \int_{\Omega_2} \left(\int_{\Omega_1} f(x, y) F(x)^{p-1} d\mu_1(x) \right) d\mu_2(y). \quad (50)$$

Given that $p' = \frac{p}{p-1}$ and using Hölder inequality, we get

$$\int_{\Omega_1} f(x, y) F(x)^{p-1} d\mu_1(x) \leq \left(\int_{\Omega_1} f(x, y)^p d\mu_1(x) \right)^{\frac{1}{p}} \left(\int_{\Omega_1} F(x)^p d\mu_1(x) \right)^{\frac{p-1}{p}} \quad (51)$$

We now plug in this in the estimate for the left hand side to get

$$\int_{\Omega_1} F(x)^p d\mu_1(x) \leq \left(\int_{\Omega_1} F(x)^p d\mu_1(x) \right)^{\frac{p-1}{p}} \int_{\Omega_2} \left(\int_{\Omega_1} f(x, y)^p d\mu_1(x) \right)^{\frac{1}{p}} d\mu_2(y), \quad (52)$$

and carrying the first integral to the left side we get the result.

If now the left hand side is infinite, we consider the sequence of functions $f_M := f\chi_M$, where χ_M is the characteristics of the set $\{(x, y) \in \Omega_1 \times \Omega_2 \mid f(x, y) \leq M\}$. Moreover, we

fix two sequences of sets $\{\omega_1^n\}_{n \in \mathbb{N}}$, $\{\omega_2^n\}_{n \in \mathbb{N}}$ such that $\mu_j(\omega_j^n) < +\infty$ and $\bigcup_{n \in \mathbb{N}} \omega_j^n = \Omega_j$ for $j = 1, 2$; given that the left hand side of the inequality to prove is finite for f_M on $\omega_1^n \times \omega_2^n$, we get

$$\left(\int_{\omega_1^n} \left(\int_{\omega_2^n} f_M(x, y) d\mu_2(y) \right)^p d\mu_1(x) \right)^{\frac{1}{p}} \leq \left(\int_{\omega_1^n} \int_{\omega_2^n} f_M(x, y)^p d\mu_2(y) d\mu_1(x) \right)^{\frac{1}{p}} \quad (53)$$

$$\leq \left(\int_{\Omega_1} \int_{\Omega_2} f(x, y)^p d\mu_2(y) d\mu_1(x) \right)^{\frac{1}{p}}. \quad (54)$$

On the other hand, we get

$$\sup_{n \in \mathbb{N}, M \geq 0} \left(\int_{\omega_1^n} \left(\int_{\omega_2^n} f_M(x, y) d\mu_2(y) \right)^p d\mu_1(x) \right)^{\frac{1}{p}} = +\infty, \quad (55)$$

and therefore the inequality is still true. \square